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In order to model solids with strong internal elastic deformations a combination of Monte Carlo (MC) and
lattice relaxation was developed. Using this method the phase diagrams corresponding to EAM potentials
for Fe–Ni and Fe–Cu were determined and segregation to an edge dislocation and a grain boundary were
simulated. In the case of the dislocation the resulting critical shear stress was calculated.
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1. Introduction

The simulation of segregation or phase separation is a difficult
task, since the relevant mechanisms take place on different time
scales. Diffusion usually takes hours or days, while the elastic lat-
tice deformation due to atomic rearrangements happens within
nanoseconds.

To overcome this problem different methods have been pro-
posed in the literature, which use a combination of MC and lattice
relaxation. A method developed by Fratzl and Penrose [1,2] is
based on an Ising model. It uses harmonic interatomic forces,
which allows for a very efficient treatment of elastic deformations.
However, strong deformations, which are present near dislocations
or in alloys with large size misfit, are not well approximated by
harmonic forces.

Another method, proposed by Finel [3], uses two different types
of MC steps, namely an exchange between neighbouring atoms or
an atomic displacement. Thus not only configurational but also
vibrational entropy is taken into account, and lattice relaxation is
incorporated in an elegant way. A drawback, however, is that
atomic exchanges may be performed before the elastic energy is
completely minimised.

Our approach is to perform a lattice relaxation after each MC
step to ensure that the elastic energy is minimal before attempting
the next step. Since a relaxation of the complete lattice would be
too time-consuming we chose an algorithm that does only local
modifications in the MC step. Thus we can confine the relaxation
to a few atoms in the vicinity of the modification.
ll rights reserved.
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2. Simulation method

The simulations described here were carried out using a
Metropolis MC algorithm on systems with fixed temperature and
total number of atoms but variable composition. The atomic inter-
actions were calculated with the embedded-atom method (EAM)
[4].

In each MC step the type of a randomly chosen atom is changed
and the resulting difference DeE in potential energy is calculated.
The change of type can be thought of as a two-step process: First
an atom is removed from the system and put into a reservoir of
chemical potential lold. Afterwards an atom from a different reser-
voir (chemical potential lnew) is put into the system at the same
position. Hence the total difference in energy is DE ¼ DeEþ
lold � lnew. In the case of a binary alloy the difference lold � lnew

can only take one of the two values ±Dl, where Dl is the differ-
ence in chemical potential for the two atom types.

If the energy difference DE ¼ DeE � Dl is positive (increase), the
type flip is rejected with a probability of 1 � exp(�DE/(kBT)),
otherwise it is accepted. The loop terminates if the relative change
in the concentration (averaged over a certain amount of steps) falls
below a given limit. Thus the composition of the system ap-
proaches its equilibrium value, which depends on the given param-
eters Dl and T (temperature).

For each direction in space the boundaries of the simulation cell
can either be treated as free surfaces, or fixed periodic boundary
conditions (PBC) can be applied. If PBC are used for all directions
this results in a constant volume simulation (TVDl-or semi-grand
canonical ensemble). If all surfaces are free, the ensemble is TpDl
with p = 0.

The main loop of the program consists of the MC step and a lat-
tice relaxation around the modification (‘‘local relaxation”, within a
radius of�6 Å). In the beginning and every 10,000 MC steps a relax-
ation of the complete lattice (‘‘global relaxation”) is performed in
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Fig. 1. MC algorithm with relaxation.

Fig. 2. Geometry of the simulation cell.

Fig. 3. Projection of the Al distribution onto the ð112Þ-plane and concentration
profile for the slice containing the lower partial dislocation; the average concen-
tration is indicated by the dashed line. The orientation of the simulation cell is the
same as in Fig. 2, i.e. the dilatation region is on the left of the slip plane and the
compression region on the right.
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order to prevent the system to deviate too far from equilibrium
(Fig. 1).

The relaxation is based on the Gear predictor–corrector algo-
rithm (see e.g. [5]), which is frequently used in molecular dynamics
(MD), and works as follows: First the atomic positions, velocities
and some higher order derivatives are predicted for the next time
step based on the current values using a Taylor expansion. Then
the forces and their deviations from the predicted values are calcu-
lated (forces and accelerations are made equal by setting the
masses to unity). In the next step a correction term, which is pro-
portional to the force deviation, is added to the predicted quanti-
ties. This procedure is repeated until the energy increases. Then
the last step is taken back, the kinetic energy is removed by setting
the velocities to zero and the loop is restarted with a smaller time
step. The algorithm terminates when the maximum force falls be-
low a given limit.

3. Results

3.1. Segregation to an edge dislocation

The stress field of an edge dislocation contains (besides shear
components) regions with positive and negative pressure. Hence
in an alloy with size misfit one expects the larger atoms to accu-
mulate in the dilatation region and to deplete in the compression
region. The inhomogeneous distribution of solute atoms around
the dislocation lowers its energy and therefore increases the force
needed to move it, which results in a higher yield stress of the
material.

As an alloy with high size misfit, Ni–Al [6,7] was used (lattice
constants: aNi = 3.52 Å, aAl = 4.05 Å). The fitting procedure for this
potential was aimed essentially at a good agreement of the elastic
constants of Ni, Al and L12–Ni3Al with experimental values, while
reproducing the lattice constants and cohesive energies exactly.
Since the size misfit is large, the elastic properties of the material
play a major role for segregation. Hence this potential is assumed
to be suitable here, although segregation energies were not consid-
ered in the fit.

The simulation was started with pure Ni (516,096 atoms) with
an edge dislocation at the center of the cell, which splits into two
partials during the initial relaxation. Due to the underestimation
of the stacking fault energy by the potential the separation is rela-
tively large (20b instead of 4b [8], b: length of the Burgers vector).
Periodic boundary conditions were applied along the dislocation
line (Fig. 2). In order to obtain a sharp concentration profile, a
rather low temperature of T = 300 K was used. The chemical poten-
tial difference Dl was chosen to yield an equilibrium Al concentra-
tion of mAl = 0.034, which was reached after 2,000,000 MC steps.

The regions of highest compression of the two partial disloca-
tions have significantly decreased Al concentration, but are hardly
visible in the simulation cell (Fig. 3, above and below the center).
The Al depletion and enrichment can be seen quantitatively in
the concentration profile which refers to a slice (between the
two planes in Fig. 3) containing only the lower partial dislocation.
Here the depletion is visible mainly in the first two ð111Þ-layers to
the right of the slip plane.

In order to determine the critical shear stress sc of the material,
the resulting atomic configuration was exposed to external shear
stress in a molecular dynamics simulation using xmd [9]. The shear
stress was generated by applying an external force in ½110�-direc-
tion to each atom on the ð111Þ-surface and an opposite force on
the opposite surface. In order to compensate the resulting torque,
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an appropriate force in �½111�-direction was applied to the atoms
on the �ð110Þ-surface respectively.

The MD simulation was run with a time step of 2 fs. During the
first 10,000 MD steps the system was relaxed by setting the veloc-
ities of all atoms to 0 every 250 steps. In the following 500 steps
xmd’s quench algorithm was applied, which is like regular MD,
but stops all atoms whenever the potential energy is higher than
in the previous step. Afterwards regular MD was used and the
shear stress was increased in steps of 20 MPa every 500 MD steps.
No temperature control was applied in the MD simulation to avoid
a time-consuming warm-up phase. The temperature stayed below
0.1 K after quenching.

In Fig. 4 the positions of the two partial dislocations are plotted
against the applied shear stress at the beginning of each phase of
constant load. The positions were determined by filtering out the
100 atoms with highest potential energy, assigning each one to a
dislocation and separately averaging over their coordinates. Both
dislocations remain at their initial positions up to 80 MPa and start
moving at 100 MPa, which yields a critical shear stress of
sc = (90 ± 10) MPa.

In order to estimate the influence of segregation an equivalent
MD simulation with pure Ni was carried out. It was started with
the same initial atomic positions and an increment of 0.5 MPa in
shear stress. In this simulation the critical shear stress cannot be
accurately determined since the dislocations already move at very
low stresses and partly in the wrong direction (Fig. 5). The reason
for this behaviour probably lies in the interaction between the dis-
locations, which might not have had their exact equilibrium
distance in the beginning. From Fig. 5 the critical shear stress can
be estimated as approximately 10 MPa, which lies in the same
order of magnitude as the experimental value 580 p/mm2 (=5.69
MPa) given by Böhm [10] for Ni of 99.8% purity. In spite of the inac-
Fig. 4. Positions of the partial dislocations during MD simulation of Ni–Al.

Fig. 5. Positions of the partial dislocations during MD simulation of pure Ni.
curacy it is clear, that the critical shear stress is greatly enhanced
by the solute Al atoms.

3.2. Calculation of phase diagrams

Simulations with direct manipulation of atom types lead to
thermodynamic equilibrium quite rapidly since atomic transport
takes place without diffusion. Hence they can be used to efficiently
determine the phase diagram of a material defined by a given po-
tential: Simulations at different temperatures and chemical poten-
tial differences Dl are run and the resulting structures are
analysed.

This procedure was applied to the Fe–Ni and Fe–Cu systems
using EAM potentials from Bonny et al. ([11,12] and references
therein). A simulation cell of 4032 atoms was used in both cases,
with free surfaces in the case of Fe–Ni. Periodic boundary condi-
tions had to be used for Fe–Cu, since otherwise significant surface
segregation was observed.

At each temperature T a series of simulations with monotoni-
cally changing Dl was carried out. For subsequent simulations
within a series the equilibrium configuration of the previous one
was used as the starting point. For each system this procedure
was run twice, once for increasing Dl and once for decreasing
Dl, i.e. starting at different sides of the phase diagram. For Fe–Ni
the calculation starting with pure Ni was done in two variants:
once with relaxation (as for Fe–Cu) and once without relaxation
except for the initial one at each T and Dl.

The Fe–Cu potential was made primarily for the simulation of
irradiation damage. Hence the focus was put onto defect binding
energies, but the solubility of Cu in Fe is also reproduced quite well.
The aim for the Fe–Ni potential was to reproduce the phase dia-
gram in the whole concentration range. Therefore the mixing en-
thalpy was considered in the fit and constraints were applied to
ensure that L10 and L12 are the only ground states of the mixture.
Thus it is expected that both potentials show phase diagrams
which are close to the experimental ones.

In the Fe–Ni system four stable phases were found (Figs. 6 and
7), whereas the ordered fcc phases are only observed at tempera-
tures below 1900 K (1700 K without relaxation). Analysis of the
resulting structures identifies these as bcc Fe, L10, L12 and fcc Ni.
These phases were also observed experimentally [13]. However,
L10 Fe–Ni is probably metastable and the L12 phase is only stable
below 790 K. Considering that both Fe and Ni are ferromagnetic
elements, it is not surprising that the experimental phase diagram
is not reproduced more closely, since magnetic interaction can only
be treated in an effective way by an EAM potential [14] and was
not taken into account by the potential used in this calculation.

The phase diagram obtained from simulations without relax-
ations (except for the global one at the beginning) is drawn as
Fig. 6. Fe–Ni phase diagram, starting with pure Ni (with relaxation: —-, only initial
relaxation: - - -).



Fig. 7. Fe–Ni phase diagram, starting with pure Fe.
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dashed lines for comparison. Transitions between the fcc phases
occur at roughly the same concentrations in both cases, whereas
the fcc–bcc transformation is shifted to lower concentrations. This
observation demonstrates the importance of relaxations for phase
transitions with structural changes.

A phase diagram was also calculated by the authors of the po-
tential [11], who used the Alloy Theoretic Automated Toolkit
(ATAT) [15]. The calculation was done in two variants, with and
without accounting for vibrational entropy, the latter one being
comparable to our method. The Fe–Ni phase diagrams presented
here are essentially similar to the one calculated with ATAT ignor-
ing vibrational entropy: The same phases were found and reside in
similar regions of concentration and temperature.

Figs. 8 and 9 show the calculated phase diagram for Fe–Cu. The
large miscibility gap is in accordance with the experimental phase
diagram [13]. However, the solubility of Fe in Cu is somewhat
Fig. 8. Fe–Cu phase diagram, starting with pure Cu.

Fig. 9. Fe–Cu phase diagram, starting with pure Fe.
lower in the simulation. The reason probably lies in the use of fixed
periodic boundary conditions, which were applied to prevent sur-
face segregation. The constant volume and shape of the simulation
cell can lead to significant stress, thus lowering the solubility.

In the phase diagram where the calculations start with pure Fe
(Fig. 9) a Cu-rich bcc phase appears at temperatures above 1500 K.
Similarly a bcc phase which even extends over the whole concen-
tration range at temperatures near 1600 K was found by Lopasso
et al. [16] in the Fe–Cu system with a different EAM potential.

The concentration dependence of the stability of Fe–Cu alloys
using ab initio and cluster expansion techniques was investigated
by Liu et al. [17]. By calculating different elastic properties they
found that the bcc phase is elastically stable up to Cu concentra-
tions around 50% and that the stability is enhanced by an Fe matrix
for Cu-rich precipitates. This observation is consistent with mea-
surements of the concentration in small Cu-rich precipitates in
Fe, which are summarized in the same paper.

However, since the Cu-rich bcc phase in our simulation is not
ordered and does not occur if the calculations start with pure Cu,
it is likely that the simulation did not reach equilibrium in this
case. I.e., the structural transformation did not happen due to lim-
ited computing time.
3.3. Segregation to grain boundaries

Experimentally the solute concentration on grain boundaries is
usually measured using Auger electron spectroscopy on surfaces of
samples fractured under ultra-high vacuum. This may not give rep-
resentative results, since the probability for a crack at a certain
Fig. 10. Grain boundary segregation: Simulation cells and concentration profiles
after 400,000 MC steps (ð11 2Þ-cut).



Fig. 11. Langmuir–McLean plot for Ni–Al.

Fig. 12. Langmuir–McLean plot for Ni–Fe.
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grain boundary depends on its enrichment factor, i.e., the ratio of
its concentration to the bulk concentration. Simulations can give
an indication of the reliability of this experimental method, be-
cause here the enrichment can be determined independently of
the crack probability.

A theory that describes the temperature dependence of segrega-
tion to grain boundaries was proposed by McLean [18]. In this the-
ory lattice sites are divided into two types, grain boundary and
bulk, with potential energies e and E respectively. The equilibrium
distribution of solute atoms is then determined by the minimum of
the free energy F. For dilute systems (bulk concentration c� 1)
this leads to the following relation between grain boundary con-
centration cg and temperature T:

E� e
kBT

¼ ln
cg

ð1� cgÞc
ð1Þ

Hence, a plot of ln cg
ð1�cgÞc over 1/T should give a linear relation with

slope (E � e)/kB.
Corresponding diagrams from simulations of Ni–Fe [19] and Ni–

Al [6,7] are shown in Figs. 11 and 12. The simulation cells consisted
of 44,160 atoms each and were prepared with a 30� tilt grain
boundary. Periodic boundary conditions were used along the tilt
axis (½112�) (Fig. 10). The grain boundary was constructed by cut-
ting a single crystal into halves, rotating them by ±15� respectively,
cutting the tilted surfaces horizontally and vertically, putting the
halves together and relaxing the lattice.
In the Ni–Al system the linear relation (1) is fulfilled quite well.
A linear fit yields an energy difference of 51 meV. For Ni–Fe, how-
ever, the low temperature data points deviate strongly from the
linear behaviour. The reason lies in the rather high grain boundary
concentrations, which are reached especially at low temperatures.
This strong enrichment leads to significant interaction between
solute atoms, hence the assumption of a constant energy for grain
boundary sites is no longer valid.

4. Conclusion

The combination of MC with lattice relaxation can be used to
simulate many different phenomena which are relevant for the
mechanical characteristics of alloys. The calculation of phase dia-
grams can show which phases are described well by the potential
and contribute to the optimisation of potentials. Segregation to
grain boundaries can strongly influence the brittleness of a mate-
rial and is difficult to measure experimentally. Similarly the segre-
gation to dislocations affects the critical shear stress. Thus
simulations can help to analyse the microstructure and its effect
on mechanical properties.
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